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Abstract. In a buyer-supplier game, a special type of assignment game,
a distinguished player, called the buyer, wishes to purchase some combi-
natorial structure. A set of players, called suppliers, offer various compo-
nents of the structure for sale. Any combinatorial minimization problem
can be transformed into a buyer-supplier game. While most previous
work has been concerned with characterizing the core of buyer-supplier
games, in this paper we study optimization over the set of core vectors.
We give a polynomial time algorithm for optimizing over the core of any
buyer-supplier game for which the underlying minimization problem is
solvable in polynomial time. In addition, we show that it is hard to deter-
mine whether a given vector belongs to the core if the base minimization
problem is not solvable in polynomial time. Finally, we introduce and
study the concept of focus point price, which answers the question: If we
are constrained to play in equilibrium, how much can we lose by playing
the wrong equilibrium?

1 Introduction

In this paper, we study the core of a large set of games, a subset of assignment
games, which we term buyer-supplier games [3, 22] [23, Chapter 6]. We are pri-
marily concerned with efficient computations over the set of vectors belonging
to the core of buyer-supplier games. Before diving into an overview of buyer-
supplier games, we present some connections between our work and the existing
literature.

1.1 Related Work

Though suggested by Edgeworth as early as 1881 [8], the notion of the core
was formalized by Gillies and Shapley [11, 21], extending von Neumann and
Morgenstern’s work on coalitional game theory [24]. Recently, Goemans and
Skutella studied the core of a cost sharing facility location game [12]. In their
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paper, Goemans and Skutella are primarily interested in using core vectors as
a cost sharing indicator, to decide how much each customer should pay for
opening the facility used by the customer. Goemans and Skutella show that, in
general, the core of the cost sharing facility location game they study is empty.
In contrast, for the buyer-supplier games we study, the core is always nonempty.
Additionally, in our work we do not view vectors in the core as an indication of
cost shares but rather as rational outcomes of negotiation amongst the players
in the buyer-supplier game. Pál and Tardos extend the work of Goemans and
Skutella by developing a mechanism for the cost sharing facility location game
which uses the concept of an approximate core [15].

There has been great interest in comparing the game’s best outcome to the
best equilibrium outcome, where the term best is based on some objective func-
tion. For example, one may wish to compare the outcome maximizing the net
utility for all players in the game against the best possible Nash equilibrium,
with respect to net utility. Papadimitriou termed one such comparative measure
as the price of anarchy [16]. Roughgarden and Tardos have studied the price of
anarchy in the context of routing [18–20].

In this paper, we introduce a quantity with a similar motivation to that
of the price of anarchy. Solution concepts often yield multiple predictions, or
equilibria. In actual game play, however, only one of the equilibria can be chosen
by the game’s players. Experiments show that conditions outside the game, such
as societal pressures or undue attention to a specific player, focus the players’
attention on the point of a single equilibrium, which then becomes the outcome
of the game. This is a common notion in game theory called the focus point.
A player may receive different payoffs in different equilibria. How much is the
player willing to pay for a good focus point? We define the focus point price with
respect to a given player as the difference between the maximum and minimum
equilibrium payoffs to the player. Stated succinctly, focus point price answers
the question: If we are constrained to play in equilibrium, how much can we lose
by playing the wrong equilibrium?

Recently, Garg et al. studied transferable utility games they call coalitional
games on graphs [10]. Coalitional games on graphs are a proper subset of buyer-
supplier games, which can be derived by setting the buyer’s internal cost, Bcost,
to zero (see Section 1.3 and Lemma 1). For some buyer-supplier games, for
example the buyer-supplier facility location game, it does not appear that the
game can be described with Bcost fixed to zero.

Garg et al. study the concepts of “frugality” and “agents are substitutes.”
They show that suppliers are substitutes if and only if the core of the game
forms a lattice. In buyer-supplier games, suppliers are not always substitutes. In
Lemma 4, we show that if suppliers are substitutes, we can optimize over the core
by solving a polynomially sized linear program. Garg et al. and, more recently,
Karlin et al. study and characterize the frugality certain auction mechanisms;
the focus point price concept introduced in this paper is quite different from
frugality [13].



A third difference between Garg et al. and this work comes from the fact that,
similarly to the economics literature, Garg et al. are mainly concerned with the
characterization of the core: When does the core form a lattice? How do core
vectors relate to auctions? We, on the other hand, are mainly concerned with
characterizing optimization over the core. Our main results are in the flavor
of Deng and Papadimitriou, in that we are interested with the complexity of
computing using game theoretic characterizations [6].

Faigle and Kern study optimization over the core for submodular cost par-
tition games [9]. Faigle and Kern exhibit a generic greedy-type algorithm for
optimization of any linear function over the core of partition games whose value
function is both submodular and weakly increasing, a property they define.

The greedy framework of Faigle and Kern captures certain buyer-supplier
games, such as the buyer-supplier minimum spanning tree game. However, even
some buyer-supplier games derived from problems that admit greedy solutions,
such as the buyer-supplier shortest path game, are not amenable to the approach
of Faigle and Kern. In this paper, we do not restrict ourselves to greedy algo-
rithms. By making use of the ellipsoid method, we are able to give polynomial
time algorithms for optimization over the core of any buyer-supplier game for
which the underlying minimization problem is solvable in polynomial time.

To provide the reader with a simple, concrete example of optimization over
the core of a buyer-supplier game, towards the end of this paper, we focus our
attention on the buyer-supplier minimum spanning tree game. We give a sim-
ple greedy algorithm for this problem, which is a minor extension of Kruskal’s
minimum spanning tree algorithm. A greedy algorithm is provided by the work
of Faigle and Kern, but their exposition involves a good deal of machinery. Our
exposition is completely elementary.

Several methods, apart from buyer-supplier games, are known for transform-
ing a combinatorial optimization problem into a game. The cores of these trans-
formations have also been extensively studied. For example, Deng et al. show
results on core non-emptyness, distinguishability of core vectors, and finding core
vectors for one such transformation [5]. Caprara et al. continue the work of Deng
et al. by considering a certain optimization over the set of core vectors for this
alternate transformation [4].

1.2 Main Contributions

There has been increased interest from the theoretical computer science com-
munity in game theory. While problem-specific solutions may give us insight,
to leverage the full power of decades of study in both research areas, we must
find generic computational solutions to game theoretic problems. Indeed, others
have already realized this need [1, 17]. In this paper, we continue this line of work
by deriving generic results for computing with core solutions in a large class of
games.

The core of buyer-supplier games in the transferable utility setting is char-
acterized by Shapley and Shubik [22]. As a minor contribution, we extend their



result by showing that the core in the non-transferable utility setting is the same
as the core with transferable utilities. Our primary contributions are as follows:

1. While previous work in the economics literature has concentrated on char-
acterizing the core of buyer-supplier games and relating core vectors to auc-
tions, our main interest is in optimizing over the set of core vectors [3]. We
provide a generally applicable algorithm, based on the ellipsoid method, for
optimizing over the core. If the original minimization problem is solvable in
polynomial time, we show that it is possible to optimize linear functions of
core vectors in polynomial time.

2. We fully characterize optimization over the core of buyer-supplier games by
using a polynomial time reduction to show that if the original minimization
problem is not solvable in polynomial time, it is impossible, in polynomial
time, to test if an arbitrary vector is in the core of the buyer-supplier game.

3. We introduce the concept of focus point price. Our positive computational re-
sults give a polynomial time algorithm for computing the buyer’s focus point
price in buyer-supplier games when the underlying minimization problem is
solvable in polynomial time. When the underlying minimization problem is
not solvable in polynomial time, we show that it is impossible to approximate
the buyer’s focus point price to within any multiplicative factor.

1.3 Overview of Buyer-Supplier Games

The definition of a buyer-supplier game, given in Section 2.1, is self-contained
and does not require an argument. However, it is also possible to transform
a combinatorial minimization problem into a buyer-supplier game. Consider a
combinatorial minimization problem of the following form. We have some finite
set of elements C. We designate some subsets of C as feasible. To capture fea-
sibility, we use a predicate P : 2C → {0, 1}, where the predicate is one on all
feasible subsets of C. With each feasible set A ⊆ C, we associate a nonnegative
cost f(A). The combinatorial minimization problem can then be captured by
the function MinProb : 2C → ℜ+ defined by

MinProb(B) = min
A ⊆ B

P (A) = 1

f(A)

where ℜ+ denotes the nonnegative real numbers.
To transform the above minimization problem into a buyer-supplier game,

we associate a player with each element of C; we call such players suppliers. We
also add another player whom we call the buyer. In the game, the buyer wishes
to purchase a feasible subset of C. The suppliers, on the other hand, are offering
their membership to the buyer’s set at a price.

To fully specify the game’s model of a realistic interaction, we let M designate
the maximum investment the buyer is willing to spend on a feasible set. We
decompose f such that f(A) = Bcost(A)+

∑
a∈A τ(a), where τ(a) is the internal



cost for supplier a to be present in the buyer’s set and Bcost(A) is the internal
cost to the buyer for purchasing this specific feasible set. In general, many such
decompositions are possible, and they produce different games. However, when
specifically applying the core solution concept, Lemma 1 shows that all such
decompositions are equivalent. Though it is not necessary, to remove special
cases in our statements, it is convenient to let Bcost(A) = M when A = ∅ or A
is not feasible.

Now that we have determined the internal costs for the buyer and the suppli-
ers, we can specify the game. The buyer-supplier game is specified by the tuple
(C, τ, Bcost). The strategy set for the buyer is the power set of C. By playing
A ⊆ C, the buyer chooses to purchase the membership of the suppliers in A. The
strategy set for every supplier a ∈ C is the nonnegative real numbers, indicating
a bid or payment required from the buyer for the supplier’s membership.

For any supplier a ∈ C, we let β(a) denote the associated bid. Let A be the
set of suppliers chosen by the buyer. The payoff for the buyer is M −Bcost(A)−∑

a∈A β(a). The payoff for a supplier not in A is 0. The payoff for a supplier a
in A is β(a) − τ(a).

Since we are applying the solution concept of the core, one may think of the
game play as follows. All the players in the game sit down around a negotiating
table. All the players talk amongst themselves until they reach an agreement
which cannot be unilaterally and selfishly improved upon by any subset of the
players. Once such an agreement is reached, game play is concluded. Since no
subset of the players can unilaterally and selfishly improve upon the agreement,
rationality binds the players to follow the agreement.

The fully formal definition of a buyer-supplier game is given in Section 2.1.
The transformation process described above can be used to create buyer-supplier
games from most combinatorial minimization problems. For example, minimum
spanning tree, Steiner tree, shortest path, minimum set cover, minimum cut,
single- and multi-commodity flow can all be used to instantiate a buyer-supplier
game. As a concrete example and interpretation of a buyer-supplier game, con-
sider the buyer-supplier minimum spanning tree game. In this game, a company
owns factories on every node of a graph. The company wishes to connect the
factories by purchasing edges in the graph. Each edge is owned by a unique sup-
plier player. Each supplier has an internal cost associated with the company’s
usage of the edge. The company has a maximum amount of money it is willing to
spend on purchasing edges. Depending on the transportation conditions of a par-
ticular edge, the company may have some internal cost associated with choosing
that particular edge. The buyer-supplier game paradigm yields similarly natural
games when applied to other minimization problems.

In this paper we will be concerned with efficient computation over the set of
core vectors. For the rest of the paper, when we say polynomial time, we mean
time polynomial in the size of the parameter C, which is also polynomial in the
number of players of the buyer-supplier game.



1.4 Organization of the Paper

In Section 2 we define buyer-supplier games and the core of a game. In Section 3
we characterize the core of buyer-supplier games. In Section 4 we give positive
computational results, namely the generic algorithm for optimizing over the set
of core vectors. In Section 5 we give negative computational results by showing
polynomial time equivalence between several related problems. In Section 6 we
give the problem-specific combinatorial algorithm for the buyer-supplier game
arising from the minimum spanning tree problem.

2 Definitions

2.1 Buyer-Supplier Games

Let C be a finite set and M be a nonnegative real number. Let τ be a function
from C to ℜ+. Let Bcost be a function from 2C to ℜ+ such that Bcost(∅) =
M . The simplifying condition that Bcost(∅) = M is not required. We explain
the condition’s purpose later in this section. For A ⊆ C, let Eval(τ, Bcost,A)
denote Bcost(A) +

∑
a∈A τ(a). For A ⊆ C, let MinEval(τ, Bcost,A) denote

minB⊆A Eval(τ, Bcost,B). We will omit the parameters τ and Bcost from the
functions Eval(τ, Bcost,A) and MinEval(τ, Bcost,A) when the value is clear.

Given a tuple (C, τ, Bcost), we proceed to define a buyer-supplier game. As-
sociate a player with each element of C. Call the players in C suppliers. Let there
also be another player, µ, whom we call the buyer. Let P = C ∪ {µ} be the set
of players for the buyer-supplier game.

The strategy for supplier a is a tuple (β(a), pa) with β(a) ∈ ℜ+ and pa : P →
ℜ+. The first element, β(a), represents supplier a’s bid to the buyer, requiring
the buyer to pay β(a) for using the supplier’s services. The second element,
pa, represents the nonnegative side payments supplier a chooses to make to the
game’s players. By pa(b) we denote the side payment a makes to player b.

The strategy for the buyer, µ, is a tuple (A, pµ) where A ∈ 2C and pµ :
P → ℜ+. The first element, A, represents the suppliers chosen by the buyer
for a purchase. Similarly to a supplier, the second element, pµ, represents the
nonnegative side payments the buyer chooses to make to the game’s players.

For each player a ∈ P we denote the player’s strategy set by Sa. For a set of
players A ⊆ P , we denote the set of strategies

⊗
a∈A Sa by SA. We call elements

of SA strategy vectors. We index strategy vectors from SA by the elements of
A.

We now define the utility function for each player. Suppose strategy s ∈ SP

is played. Specifically, suppose that (A, pµ) ∈ Sµ and (β(a), pa) ∈ Sa for each
a ∈ C are played. The utility function for buyer is uµ(s) = M − [Bcost(A) +∑

a∈A β(a)] + [
∑

b∈P pb(µ) −
∑

b∈P pµ(b)]. The utility for a supplier a in A is
ua(s) = β(a) − τ(a) + [

∑
b∈P pb(a) −

∑
b∈P pa(b)]. The utility for a supplier a

not in A is ua(s) = [
∑

b∈P pb(a) −
∑

b∈P pa(b)].
Interpreting, the buyer begins with a total of M utility and chooses to make

a purchase from each supplier in A. The buyer gives β(a) to each supplier a ∈ A



and loses an extra Bcost(A) from the initial M utility. Each supplier a in A
receives the bid payment from the buyer and loses τ(a) because the supplier must
perform services for the buyer. The distribution of sidepayments completes the
utility functions. The requirement that Bcost(∅) = M lets the strategy ∅ stand
as a “don’t play” strategy for the buyer. To remove the requirement, we could
introduce a specific “don’t play” strategy to the buyer’s strategy set, however
this creates a special case in most of our proofs.

Let the sidepayment game we have defined be denoted SP. Let NOSP denote
the same game with the additional requirement that all sidepayments be fixed
to zero. In other words, in NOSP we restrict the strategy set for each a ∈ P so
that pa is identically zero.

2.2 Game Theoretic Definitions

All of the definitions in this section closely follow those of Shubik [23, Chapter
6].

We call a vector in ℜ|P|, indexed by a ∈ P , a payoff vector.
Let π be a payoff vector and s be a strategy vector in SA for A ⊆ P . Let t

be any strategy vector in SP such that the projection of t onto the coordinates
in A is equal to s. If for all t and for all a ∈ A we have πa ≤ ua(t), we say that
the players in A can guarantee themselves payoffs of at least π by playing s.

We use Shubik’s alpha theory to define our characteristic sets [23, pp. 134-
136]. Thus for a set of players A ⊆ P , we define the characteristic set, V (A),
to be the set of all payoff vectors π such that there is a strategy vector s ∈ SA,
possibly dependent on π, with which the players in A can guarantee themselves
payoffs of at least π. In the transferable utility setting, SP, the characteristic sets
can be replaced with a characteristic function. Given the definitions of the utility
functions in Section 2.1, the characteristic function Ṽ (A) for a set of players A
is equal to M − MinEval(τ, Bcost,A− {µ}).

We say that a set A ⊆ P of players are substitutes if Ṽ (P) − Ṽ (P − B) ≥∑
a∈B Ṽ (P) − Ṽ (P − {a}) for all B ⊆ A.
We say that a payoff vector π dominates a payoff vector ν through a set

A ⊆ P if πa > νa for all a ∈ A. In other words, π dominates ν through A when
each player in A does better in π than in ν.

For a set of players A ⊆ P , we define D(A) as the set of all payoff vectors
which are dominated through A by a payoff vector in V (A). Interpreting, the
players in A would never settle for a payoff vector π ∈ D(A) since they can
guarantee themselves higher payoffs than those offered in π.

The core of a game consists of all π ∈ V (P) such that π /∈ D(A) for all
A ⊆ P .

3 A Characterization of the Core

The characterazation of the core of buyer-supplier games in the transferable
utility setting was done by Shapley and Shubik [22]. In this seciton, we show the



surprising result that the same characterization holds in the non-transferable
utility setting. In general, it is not the case that the core of the transferable utility
and non-transferable utility versions of a game are the same. For example, the
buyer may be able to use bribes to alter the bidding strategies of some suppliers,
and thus reduce the bids of other suppliers. The following theorem characterizes
the core of buyer-supplier games.

Theorem 1. A payoff vector π is in the core of a buyer-supplier game defined
by (C, τ, Bcost) if and only if it satisfies

πa ≥ 0 for all a ∈ P, (1)
∑

a∈A

πa ≤ MinEval(τ, Bcost, C − A) − MinEval(τ, Bcost, C) for all A ⊆ C, (2)

πµ = M − MinEval(τ, Bcost, C) −
∑

a∈C

πa. (3)

Because of space considerations, here and in the rest this paper we choose
to present the intuition and a proof sketch for most of the stated results. Fully
detailed proofs of all results are presented in the companion technical report [7].

We take as a given the result by Shapley and Shubik, which shows that under
transferable utilities, the core is characterized by Theorem 1.

The intuition for the equivalence of the transferable utility core and the
non-transferable utility core is as follows. Consider a payoff vector π satisfying
Equation (1). A set of suppliers can only guarantee zero payoffs for themselves.
Thus, for a set of players A to be able to truly improve upon the payoffs given
in π, the buyer must be in A. However, if the buyer is in A, the players in A can
simulate sidepayments amongst themselves by having the suppliers in A alter
their bids to the buyer. Thus, the sidepayments do not add any additional power
to the set of players A.

As a corollary to Theorem 1, we have the following lemma, which shows
that the core does not change depending on the decomposition chosen in the
transformation from a combinatorial minimization problem to a buyer-supplier
game.

Lemma 1. Let Bcost∗(A) =
∑

a∈A τ(a) + Bcost(A). The core of the buyer
supplier-games defined by (C, τ, Bcost) and (C, 0, Bcost∗) is the same.

4 Polynomial Time Optimization Over the Core Vectors

We define the separation problem on a set of linear inequalities A as follows.
Given a vector π, if π satisfies all of the inequalities in A, then do nothing; oth-
erwise, output a violated inequality a ∈ A. It is well known that the separation
problem is polynomial time equivalent to linear function optimization over the
same set of inequalities [14, p. 161].



Let (C, τ, Bcost) define a buyer-supplier game. In this section, to simplify the
notation, we will omit the parameter Bcost from Eval and MinEval since it is
fixed by the buyer-supplier game.

In this section, we will analyze an algorithm to solve the separation problem
for the exponentially sized set of inequalities given in Equations (1), (2), and
(3). We now give the algorithm, which we call the separation algorithm. Given
the payoff vector π as input,

1 Iterate over Equations (1) and (3) to check that they hold. If some equation
does not hold, output that equation and halt.

2 Compute F ⊆ C such that Eval(τ,F) = MinEval(τ, C). If there is some a ∈
C − F with πa > 0, output the inequality from Equation (2) corresponding
to {a} and halt.

3 Define τ̂(a) = τ(a) + πa for a ∈ C. Now, compute F̂ ⊆ C such that
Eval(τ̂ , F̂) = MinEval(τ̂ , C). If Eval(τ̂ , F̂) < Eval(τ̂ ,F), output the inequal-
ity from Equation (2) corresponding to F − F̂ . Otherwise, halt.

Theorem 2. If given an input τ̂ : C → ℜ+ it is possible to compute both
Eval(τ̂ ,A) for any A ⊆ C and F ⊆ C such that Eval(τ̂ ,F) = MinEval(τ̂ , C)
in polynomial time, then the separation problem for Equations (1), (2), and (3)
is solvable in polynomial time. By the equivalence of separation and optimiza-
tion, optimizing any linear function of π over Equations (1), (2), and (3) is also
possible in polynomial time.

Proof. It is clear that given the theorem’s assumptions, the separation algorithm
runs in polynomial time. The statement follows from Lemmas 2 and 3.

Lemma 2. If the separation algorithm returns an inequality on input π, then π
violates the returned inequality.

Proof. If the algorithm returns an inequality in step 1, then the inequality is
violated since the algorithm performed a direct check.

If the algorithm returns an inequality in step 2, then the inequality is violated
since πa > 0, but MinEval(τ, C − a) = MinEval(τ, C) = Eval(τ,F).

Suppose the algorithm returns an inequality in step 3. Thus, Eval(τ̂ , F̂) <
Eval(τ̂ ,F). By applying the definitions of Eval and τ̂ , we have

∑
a∈F̂ πa +

Eval(τ, F̂) <
∑

a∈F πa + Eval(τ,F).
Since the algorithm reaches step 3, we know that πa = 0 for all a ∈ C − F .

Thus, we have
∑

a∈F̂∩F πa + Eval(τ, F̂) <
∑

a∈F πa + Eval(τ,F), which in turn

gives Eval(τ, F̂) − Eval(τ,F) <
∑

a∈F−F̂ πa.

Let A = F − F̂ . From the algorithm, we know that the set F satisfies
Eval(τ,F) = MinEval(τ, C). Since F̂ ⊆ C − A, the definition of MinEval im-
plies that MinEval(τ, C − A) ≤ Eval(τ, F̂). Thus, we have MinEval(τ, C − A) −
MinEval(τ, C) ≤ Eval(τ, F̂) − Eval(τ,F) <

∑
a∈A πa, which shows that the in-

equality output by the algorithm is violated.

Lemma 3. If π violates some inequality in Equations (1), (2), and (3), then
the separation algorithm run on input π returns an inequality.



Proof. If the violation is in Equations (1) or (3), the violated inequality will be
output by the direct check in step 1. If some inequality is output by step 2, we
are done. Otherwise, since steps 1 and 2 output no inequality, we know that
πa = 0 for all a ∈ C − F , where F is as computed in the algorithm.

Now, suppose the inequality from Equation (2) for set A ⊆ C is violated. In
other words, we have,

∑
a∈A πa > MinEval(τ, C − A) − MinEval(τ, C). Let B be

such that Eval(τ,B) = MinEval(τ, C − A).
Thus, we have

∑
a∈A πa > MinEval(τ, C − A)−MinEval(τ, C) = Eval(τ,B)−

Eval(τ,F).
Since πa = 0 for all a ∈ C−F , we have Eval(τ,F)+

∑
a∈F∩A πa > Eval(τ,B).

Adding
∑

a∈F−A πa to both sides of the above inequality and substituting
the definition of Eval, we have Bcost(F) +

∑
a∈F τ(a) +

∑
a∈F πa > Bcost(B)+∑

a∈B τ(a) +
∑

a∈F−A πa.
Since πa = 0 for all a ∈ C − F and B ⊆ C − A, we can alter the right

hand side of the above inequality to get Bcost(F) +
∑

a∈F τ(a) +
∑

a∈F πa >
Bcost(B) +

∑
a∈B τ(a) +

∑
a∈B πa +

∑
a∈F−A−B πa.

By applying the definition of τ̂ and Eval, we have Eval(τ̂ ,F) > Eval(τ̂ ,B) +∑
a∈F−A−B πa. We know that πa ≥ 0 for all a ∈ P since the algorithm does not

output anything in step 1. Thus, Eval(τ̂ ,F) > Eval(τ̂ ,B) ≥ MinEval(τ̂ , C) =
Eval(τ̂ , F̂), where F̂ is as computed in the algorithm. So, step 3 outputs an
inequality.

The following lemma illustrates a key difference between Garg et al. and this
work.

Lemma 4. If suppliers are substitutes, then all but the |C| singleton equations of
Equation (2) are not constraining. Thus, if suppliers are substitutes, optimization
over the core of the buyer-supplier game is reduced to solving a polynomially sized
linear program.

Proof. Suppose that the suppliers are substitutes. By the definition of suppliers
are substitutes, we have that Ṽ (P) − Ṽ (P −A) ≥

∑
a∈A[Ṽ (P) − Ṽ (P − {a})]

for all A ⊆ C. By the definition of Ṽ , we have MinEval(τ, Bcost, C − A) −
MinEval(τ, Bcost, C) ≥

∑
a∈A[MinEval(τ, Bcost, C − {a})−MinEval(τ, Bcost, C)]

for all A ⊆ C. This implies that if the singleton equations in Equation (2) are
satisfied, then so are all equations in Equation (2). Thus, if suppliers are sub-
stitutes, we may drop all non-singleton equations from Equation (2) and reduce
the number of inequalities to a polynomial in the number of players.

5 Inapproximability of Optimization Over Core Solutions

Consider a buyer-supplier game defined by (C, τ, Bcost). We introduced the con-
cept of the focus point price in the introduction. The concept leads us to ask
the natural question: What is the difference between the best and worst core
outcome for the buyer? In other words, the value of interest is the solution to
the linear program: maximize

∑
a∈C πa subject to Equations (1), (2), and (3).



This natural question leads us to define the focus point price (FFP) problem as
follows: on input (C, τ, Bcost), output the optimal value of the afore mentioned
linear program.

Define the Necessary Element (NEL) problem as follows. Given parameters
(C, τ, Bcost) return TRUE if there exist an element a ∈ C such that for all F ⊆ C
satisfying Eval(τ, Bcost,F) = MinEval(τ, Bcost, C) we have a ∈ F . Otherwise,
return FALSE.

Define the OPT-SET problem as follows. Given parameters (C, τ, Bcost), re-
turn F such that Eval(τ, Bcost,F) = MinEval(τ, Bcost, C).

In this section, we will show that the FPP problem, the OPT-SET problem
and the NEL problem are polynomial time equivalent. Again, because of space
considerations we choose to present some intuition and a proof sketch. For the
fully detailed proofs, see the companion technical report [7].

For a fixed tuple (C, τ, Bcost) we say we extend the tuple to contain a shadow
element for an element a ⊆ C by creating the extended tuple (Ĉ, τ̂ , Bcost∗), where
Ĉ = C ∪ b with b /∈ C; τ̂ is the same as τ with the addition that τ̂ (b) = τ(a);
and for A ⊆ Ĉ, if b /∈ A, then Bcost∗(A) = Bcost(A), otherwise Bcost∗(A) =
Bcost((A − {b}) ∪ {a}). We call b the shadow element corresponding to a.

The full shadow extension of (C, τ, Bcost) is the tuple (Ĉ, τ̂ , Bcost∗) resulting
from extending (C, τ, Bcost) to contain a shadow element for each element in C.

First, we reduce OPT-SET to NEL. To show the result, we analyze the
following algorithm, which we call the shadow algorithm.

On input (C, τ, Bcost),

1 Let (Ĉ, τ̂ , Bcost∗) be the full shadow extension of (C, τ, Bcost).
2 For each a ∈ C

– Remove a’s corresponding shadow element from Ĉ.
– Run NEL on (Ĉ, τ̂ , Bcost∗).
– If the return value is TRUE, then add the shadow element back to Ĉ.
– If the return value is FALSE, then remove a from Ĉ.

3 Return Ĉ ∩ C. In other words, we return all elements from C remaining in Ĉ,
disregarding any shadow elements.

Lemma 5. Let (C, τ, Bcost) be the input to the shadow algorithm. Also, let
(Ĉ, τ̂ , Bcost∗) be the full shadow extension of (C, τ, Bcost). If for all A ⊆ Ĉ the
NEL problem on input (A, τ̂ , Bcost∗) is solvable in polynomial time, then the
OPT-SET problem on input (C, τ, Bcost) is solvable in polynomial time.

Given the lemma assumptions, a simple analysis shows that the shadow al-
gorithm runs in polynomial time. The rest of the proof comes in two steps.
First, the shadow algorithm maintains the invariant MinEval(τ, Bcost, C) =
MinEval(τ̂ , Bcost∗, Ĉ). This is true because we only remove an element from
Ĉ if there is an optimal set that does not contain the element. Second, if a re-
mains in Ĉ at the end of the iteration associated with a, then it can be shown
that a is contained in all subsets of Ĉ ∩ C that are solutions to the OPT-SET
problem on input (C, τ, Bcost).

The following lemma captures the relationship between the FPP problem
and the NEL problem.



Lemma 6. The solution to the FPP problem on input (C, τ, Bcost) is 0 if and
only if the solution to the NEL problem on input (C, τ, Bcost) is FALSE. Thus,
if it is possible to approximate the the FPP problem on input (C, τ, Bcost) within
any multiplicative factor in polynomial time, then the NEL problem on input
(C, τ, Bcost) is solvable in polynomial time.

The intuition behind this lemma is that if the solution to NEL is TRUE, then
there is some element a that is in all OPT-SET solutions on input (C, τ, Bcost). In
this case, the solution to the FPP problem is at least the difference between the
value of an OPT-SET solution on input (C, τ, Bcost) and the value of an OPT-
SET solution on input (C − {a}, τ, Bcost). On the other hand, if the solution
to NEL is FALSE, then the right hand sides of all singleton equations from
Equation (2) are zero, and thus the FPP problem solution is also zero.

A set of (C, τ, Bcost) instances is proper if the following conditions hold:

– Given that (C, τ, Bcost) is in the set, then so is (C, τ̂ , Bcost), where τ̂(a) =

τ(a) + πa for a vector π ∈ ℜ
|C|
+ .

– Given that (C, τ, Bcost) is in the set, then so is (A, τ̂ , Bcost∗), where A is a
subset of Ĉ and (Ĉ, τ̂ , Bcost∗) is the full shadow extension of (C, τ, Bcost).

The definition of proper instances has a natural interpretation when applied
to the transformations of combinatorial minimization problems to buyer-supplier
games. For example, for the shortest path problem, the first condition implies
that the set of instances is closed with respect to lengthening the edges of the
graph. On the other hand, the second condition implies that the set of instances
is closed with respect to adding parallel edges or removing a subset of the edges.

The results of Section 4 and the relationships we have given in this section
lead us to the following theorem.

Theorem 3. On a proper set of instances, the separation problem over Equa-
tions (1), (2), and (3), the NEL problem and the OPT-SET problem are poly-
nomial time equivalent.

Lemma 6 in combination with Theorem 3 gives us the following inapprox-
imability result.

Lemma 7. On a proper set of instances, if it is not possible to solve the OPT-
SET problem in polynomial time, it is not possible to approximate the solution
to the FPP problem to within any multiplicative factor in polynomial time.

6 A Complementary Combinatorial Algorithm

In this section, we present an efficient combinatorial algorithm for solving the
FPP problem for the buyer-supplier minimum spanning tree (MST) game.

Let a graph G = (V , E) and edge weights w : E → ℜ+ be given. Let MSTVal :
2E → ℜ+ be a function that takes as input a set of the edges A ⊆ E and returns



the weight of the minimum spanning tree of the graph induced by the edges of
A. If no spanning tree exists, MSTVal returns ∞.

By the transformation in Section 1 and Lemma 1 in the buyer-supplier min-
imum spanning tree game, we have C = E , τ(a) = w(a), and Bcost(A) = M if A
does not connect all nodes in V , or 0 otherwise. We omit the parameters τ and
Bcost from MinEval, since they are fixed by the game.

Call the linear program from the FPP problem for the given game LP1,
and let its optimal value be O1. Consider the linear program: maximize

∑
b∈C πb

subject to
∑

b∈A πb ≤ MinProb(C − A) − MinProb(C) for all A ⊆ C and πb ≥ 0
for all b ∈ C. Call the linear program from the previous sentence LP2, and let
its optimal value be O2.

We are able to prove the following relationship between LP1 and LP2. If
MinProb(C) ≥ M , then O1 = 0. If MinProb(C) < M and O2 ≤ M−MinProb(C),
then O1 = O2. If MinProb(C) < M and O2 > M − MinProb(C), then O1 =
M − MinProb(C). When considering the FPP problem arising from the buyer-
supplier game for a specific minimization problem, it may often be helpful to
consider LP2 instead of LP1. In fact, the combinatorial algorithm we present
finds the optimal value for LP2.

The key insight behind the combinatorial algorithm for the FPP problem for
the buyer-supplier MST game is the following. Let T be an MST of G. Suppose
edges e1 and e2 are edges in T . Suppose the removal of the individual edge e1 (e2)
increases the MST cost by λ1 (λ2). Then, the removal of both edges increases
the MST cost by at least λ1 +λ2. This insight leads Bikhchandani et al. to show
that for the buyer-supplier MST game, suppliers are substitutes [2]. Their result
along with Lemma 4 shows that the singleton inequalities of LP2 are an optimal
basis. Thus, all our combinatorial algorithm must calculate is the increase in the
MST cost associated with the removal of each edge in T .

We give a modified Kruskal Algorithm which can be used to compute the
optimal value of LP2. The modifications are as follows. Throughout the algo-
rithm’s execution we will keep an auxiliary set of edges, A, which is initially
empty. When edge e is added to the minimum spanning forest, also add e to the
set A. Suppose edge e is rejected from addition to the minimum spanning forest
because it creates a cycle. Let the cycle created be H = (V ′, E ′). For each edge
a ∈ E ′−{e}, if a ∈ A, label a with w(e)−w(a) and remove a from A. The labels
computed by the algorithm are the required increases in the MST cost.
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