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Abstract

In this paper we study the following covering process defimest an arbitrary directed graph. Each
node is initially uncovered and is assigned a random inteagee drawn from a suitable range. The pro-
cess then proceeds in rounds. In each round, a uniformlyoramde is selected and its lowest-ranked
uncovered outgoing neighbor, if any, is covered. We prosgeifteach node has in-degr&¢d) and out-
degreeO(d), then with high probability, every node is covered witldn - max(3, (logn)/d)) rounds,
matching a lower bound due to Alon. Alon has also shown tloata certain class al-regular expander
graphs, the upper bound holds no matter what method is useldotmse the uncovered neighbor. In
contrast, we show that for arbitradyregular graphs, the method used to choose the uncovergihozi
can affect the cover time by more than a constant factor.
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1 Introduction

One of the most commonly discussed stochastic processemriputer science is the so-called coupon
collector process [6]. In that process, thereradistinct coupons and we proceed in rounds, collecting one
uniformly random coupon (with replacement) in each rounde @(n) rounds sufficient to collect all of
the coupons? Put differently, is picking coupons with repfaent as efficient, to within a constant factor,
as picking them without replacement? No, it is a well-knowaat fthat with high probability the number of
rounds required to collect all of the coupon®iglog n).

This shortcoming has motivated Adlet al. [1] and Alon [2] to study a similar graph-based covering
process. The nodes of the graph nodes represent the coupmre\gering a node represents collecting a
coupon. In each round, a uniformly random nedis selected. If an uncovered neighbomoéxists, choose
one such uncovered neighbor and cover it. We refer to thisgssas process CC.

Process CC can use a variety of differeatering method® decide which uncovered neighbor to cover.
If our ultimate goal is to minimize cover time, certainly thst powerful covering method available is an
offline method with knowledge of the entire sequence of nellections and with infinite computing power.
We refer to this powerful cover time minimizing version obpess CC as process MIN. To achieve our
O(n) goal, it is natural to consider lagregular graphs since the work of Alon implies process MIN &a
expected cover time @(nmax(1, (logn)/d)) rounds ord-regular graphs [2].

1.1 Logarithmic-Degree Graphs

Another natural version of process CC — in which the covermghod chooses a uniformly random un-
covered neighbor, if any — was studied by Adétral. [1] and by Alon [2]. We refer to this version of
process CC as process UNI. Alon shows that for logarithregreéle Ramanujan expander graphs, process
UNI completes inO(n) time, matching the lower bound for process MIN.

Adler et al. show that for the hypercube, which has a weak expansion gyopet is not an expander,
process UNI take®(n) time, also matching the lower bound for process MIN [1]. yh&so show that for
arbitrary logarithmic-degree graphs, process UNI coneglé O(nlog logn) time. Furthermore, Adleet
al. present an application of process UNI to load balancing ipmetcubic distributed hash table (DHT).

A process that is intuitively similar to process UNI is oneesdawe initially assign a rank to each node
using a uniformly random permutation of the nodes, and thering method covers the minimum-rank
uncovered neighbor, if any. We refer to this permutatioseiaversion of process CC as process P-RANK.
In this paper, we show process P-RANK complete®fn) time on arbitrary logarithmic-degree graphs.

In fact, we analyze a more general and local version of pg€&3in which each node initially chooses
a uniformly random rank in a suitable range, and the covariethod covers the minimum-rank uncovered
neighbor of the selected node. (We assume that the nodesimtgered from 1 ta, and that ties in rank
are broken in favor of the lower-numbered node.) We refehi® random rank version of process CC as
process R-RANK. We show that the more general and local ppoBeRANK completes i©(n) time on
arbitrary logarithmic-degree graphs.

1.2 Resultsfor General Graphs

Alon shows that process MIN on amlyregular graph has expected time at least] + 5 loge(g) [2]. Alon

also shows that process UNI completes in time (1 + o(l))n'o% for random nearlyd-regular graphs.

Alon further shows that on anyn(d, 1)-expander graph the expected time of process UNI is at mest



n(ﬁ)z(logen+ 1). In particular, this implies that on Ramanujan graphsess UNI completes in @o(1))n
time, matching the lower bound for process MIN.

If our ultimate goal is to maximize cover time, certainly tim@st powerful neighbor selection method
available is an offline adversary with knowledge of the ensiequence of node selections and with infinite
computing power. We refer to this powerful cover time maximg version of process CC as process MAX.
Alon notes that the upper bounds for expanders hold eveneif af’ery round an adversary “is allowed to
shift the uncovered nodes to any place he wishes, keepimngniln@ber.” In particular, this shows that on
Ramanujan graphs, the cover time for process MAX matchesaber time for process MIN, up to constant
factors. In effect, the covering method does not mattertfisrd¢lass of graphs.

Another previously studied variant of process CC favorsdaog the selected node. In this variant, we
check — immediately after selecting a uniformly random nedéf the selected node is uncovered. If it
is, we cover it and move to the next selection. Only otherwlissve consider the neighbors of the selected
node. We refer to the selection-biased variants of procéfis pitocess P-RANK, and process R-RANK as
process UNI, process P-RANK and process R-RANKrespecively.

Adler et al. show that for everg-regular graph, processes UNI and UNbmplete inO(n + n
time[1]. They also show that for randogaregular graphs onl@(n + n'o%) steps are needed. Furthermore,
they exhibit an application of process UNid load balancing in DHTSs.

All of the results matching Alon’s lower bound for processNMpresented prior to this work have
used some expansion properties of the underlying graphontrast, our proof techniques do not require
the underlying graph to have any particular structure. Twasshow the more general result that for di-
rected graphs (with self-loops but no parallel edges) wkandh node has in-degree at legstand at most
Ain, while the out-degree is at maoat,;, both process R-RANK and process R-RANtOver all nodes in
O(n max@inAout/éﬁl, (logn)/éin)) rounds with high probability. This result matches Alolggver bound for
din = Ain = Aout = ©(d), and is thus optimal under these conditions.

Furthermore, Alon’s results for Ramanujan graphs raisegtiestion whether there is any separation
between the cover times for process MAX and process MIN.hemotvords, are there any graphs for which
the choice of covering method matters? We define a weaklyrgaial process, process A-RANK, that is
similar to process P-RANK. In process A-RANK, instead ofioig a uniformly random permutation, an
adversary is initally allowed to fix the permutation used $sign ranks to the nodes. We then proceed as
in process P-RANK. Define the even weaker adversarial psoB6RANK’ similarly to process P-RANK
We show that there exists a logarithmic-degree graph onhwhiiocess A-RANK and process A-RANK
each takeo(n) rounds to complete. This implies that in general there pmeion between the cover times
of process MIN and process MAX. Or, in other words, the caxggmethod does matter.

log nlogd)
d

1.3 Proof Outline

The proof of our theorem is inspired by the delay sequencenaegt used by Ranade for the analysis of a
certain packet routing problem on the butterfly [7] (see §§0oIn a delay sequence argument, we identify
certain combinatorial structures that exist wheneverdhdom process lasts for a long time. Then, we show
that the probability any of these structures exist is snTddls in turn implies an upper bound on the running
time of the random process.

There are significant differences between our proof andahRianade. For example, in our problem,
the connection between the running time and the length olay dequence is not clear-cut, while in the
butterfly routing problem analyzed by Ranade, the length@tielay sequence is equal to the running time.
But let us begin by giving the notion of a delay sequence inpoablem.



Consider the node that was covered last, Why wasn’tw; covered earlier? It was not covered earlier
because at the last opportunity to cower— that is, the last selection in;’s neighborhood — we covered
some other nodey, instead. Thusw; was delayed byw,. Similarly, w, was delayed by some node, et
cetera, until finally we reach a node that was not delayed, i.enx was covered at the first opportunity.
The sequence of nodes, . .., wi corresponds to our notion of a delay sequence.

In analyzing process R-RANK, we find it useful to first analyzenuch simpler process, process SE-
LECT, in which we repeatedly select a uniformly random nagker covering anything. After establishing
several lemmas for the simpler process, we proceed to anglprocess R-RANK. This is the bulk of the
proof, and includes a technical lemma to work around thecdifiies in linking cover time to delay sequence
length. Finally, we reduce process R-RANi4 process R-RANK to show that the same bounds hold.

The rest of the paper is structured as follows. In Sectione€establish helpful definitions and lemmas
about random variables. In Section 3, we analyze the simpleeps. In Section 4, we analyze process R-
RANK. In Appendix D, we analyze process R-RANWa a reduction from process R-RANK. In Section 5,
we show the existence of a logarithmic-degree graph on whiobess A-RANK and process A-RANK
each takeu(n) rounds to complete, establishing that the covering mettams matter. Section 6 provides
some concluding remarks.

2 Preliminaries

We use the ternd-sequence to refer to a sequence of leAgtRor any/-sequencer of elements of a given
type, and any elementof the same type, we let : x denote the{ + 1)-sequence obtained by appending
elementxto o.

For any nonnegative integarand probabilityp, we letX ~ Bin(n, p) denote that the random variable
X has a binomial distribution with trials and success probability We letX ~ Geo(p) denote that the
random variableX has a geometric distribution with success probabijiityVe letX ~ NegBin(r, p) denote
that the random variabl¥ has a negative binomial distribution withsuccesses and success probabjity
See Appendix A for proofs of the basic probabilistic lemmiases! below.

Lemma 2.1. Let p denote an arbitrary probability, let denote an arbitrary nonnegative integer, and let
X ~ NegBin(¢, p). For any integer j such that < j < ¢, let p; denote an arbitrary probability such that

pj > p, lety; ~ Geo(pj), and let Y= ¥ 1<, Y;. Then for any nonnegative integePiy(X > i) > Pr(Y > i).

Lemma 2.2. For any nonnegative integers r and n, and any probability g,havePr(X < r) = Pr(Y > n),
where X~ Bin(n, p) and Y ~ NegBin(r, p).

Lemma 2.3. For any integer r> 2, Pr(X > 2E[X]) = Pr(X > 2r/p) < exp(-r/8), where X~ NegBin(r, p).

Lemma 2.4. Let p be an arbitrary probability and let X be the sum of n ingleglent Bernoulli variables
X1, ..., Xn, Where X has success probability; @ p. ThenPr(X < np/2) < exp(-np/12).

Lemma 2.5. Suppose we repeatedly throw balls independently and umijoat random into n bins, and let
the random variable X denote the number of throws require@¥ery bin to receive at least n balls. Then
X is O(n?) with high probability, that is, with failure probability #t is an arbitrary inverse polynomial in n.

Lemma 2.6. Let j balls be thrown independently and uniformly at randartoin bins. Let X denote
the number of bins with at least one ball at the end of the exyart. ThenPr(X < min(n/4, j/4)) <

exp-j/2).



3 ProcessSELECT

Throughout all sections of this paper related to estalgshipper bounds — that is, Sections 3 and 4 as well
as Appendix C — we fix an arbitrary directed graph= (V, E) where|V| = n > 0. We say that an event
holds “with high probability” if the probability that it f& to occur is upper bounded by an arbitrary inverse
polynomial inn. We letd;, denote the minimum in-degree of any nodeg, denote the maximum in-degree
of any node, and we let,,; denote the maximum out-degree of any node. For ease of ¢posiie assume
throughout the paper thég, > 0. The edge sék is allowed to contain loops but not parallel edges. For any
nodev, we definelj, (V) as{w | (w, V) € E}. For any sequence of edges= (ui,Vv1),..., (Ug, V¢), we define
the two sequences of node(o) = Uy, ..., U anddst(o) = v4,..., V.

In this section, we analyze a simple stochastic processepsoSELECT, defined as follows. Initially,
we fix a positive integer and independently assign each nod&ia uniformly random integer rank from
{1,...,r}. Process SELECT then proceeds in an infinite number of rqundexed from 1. In each round,
one node is selected uniformly at random, with replaceme&ht following definitions are central to our
analysis of this process.

A node sequence is said to ank-sortedif the associated sequence of node ranks is nondecreasing.

For any node sequenee we inductively define a nonnegative integierration(o) and a node sequence
selec{o) as follows. Ifo-is empty, therduration(o) is 0 andselec{o) is empty. Otherwisar is of the form
7 . vfor some shorter node sequencand nodev. Leti denote the the leassuch thai > duration(r) and
the node selected in roundelongs tdj,(v). Let u denote the node selected in roundrhen we define
duration(o) asi, andselec{o) asselectr) : u.

See Appendix B for proofs of the following lemmas related togess SELECT.

Lemma 3.1. For any{-sequence of distinct nodes Pr(o is rank-sorted = (€+;‘1)r"" .

Lemma 3.2. For any{-sequence of nodes= vi,...,V, and any nonnegative integer i, we have
Pr(duration(c’) = i) < Pr(X > i), where X~ NegBin(f, 5_)

n

Lemma 3.3. For any¢-sequence of edges Pr(selec{dst(c)) = sro(o)) < 6-¢.

— In

Lemma 3.4. For any¢-sequence of edgesand nonnegative integer i, the events-Adst (o) is rank-sorted”,
B = “duration(dst(c)) = i”, and C = “select(ds{o)) = sr¢(o)” are mutually independent.

Lemma3.5. Leto be anf-sequence of edges such that the nodes ¢@f§late distinct, let X~ NegBin(f, %)
let i be a nonnegative integer, and let events A, B and C beaikéin in the statement of Lemma 3.4. Then
PrANBNC) < (“7Y) PriX 2 i)(roin) .

4 Process R-RANK

In the section we analyze an augmented version of proces&€SELreferred to as Process R-RANK, in
which we maintain a notion of a “covered subset” of the nodegially, all of the nodes are uncovered.
Process R-RANK then proceeds in rounds in exactly the sanma@nas process SELECT, with the addi-
tional step that in any given round, if one or more outgoinigigors of the selected node are uncovered,
we cover the uncovered outgoing neighbor with minimum rgils. indicated in Section 1, ties are broken
according to some arbitrary numbering of the nodes.)
Note that process R-RANK simply augments process SELECH thi¢ additional notion of covered

nodes; rank assignment and selections are performed itheitzesame manner in the two processes. Thus



all of the definitions and lemmas presented in Section 3 gobcaple to process R-RANK. The following
additional definitions are useful for our analysis of pracBsRANK.

Thecover timeof process R-RANK is defined as the number of rounds requiredver all of the nodes.

We inductively define the notion of lanked sequence of edges. Féequal to 0 or 1, any-sequence
of edges is linked. Fof > 1, an¢-sequence of edges of the forem : (u,v) : (U,V) is linked if the
(¢ - 1)-sequence : (u,V) is linked and ¢, v') belongs tcE.

For any nodey, we defingparen{v) as follows. Leti denote the round in which nodeis covered. If
i is the first round in which some nodeIif,(v) is selected, theparen(v) is defined to banil. Otherwise,
pareniv) is the node covered in the first round prior to roumad which the selected node belongdig(v).

We inductively define the notion of @hronologicalsequence of nodes as follows. Afssequence of
nodes with? < 1 is chronological. Arr-sequence of nodes of the fowm: v : V' is chronological ifo- : vis
chronological and nodeis covered before nodé.

We inductively define the notion of aactive node sequence as follows. The empty node sequence is
active. A singleton node sequence consisting of the nodeactive if paren{v) = nil. An £-sequence of
nodes of the fornar : v : V' is active ifo : v is active ancpareni{v’) = v.

We call anf-sequence of edgesactiveif dst(o) is active andselec{dst(o)) = sr¢(o).

We call anf-sequence of edgesi-activeif it is active and eithe =i = 0 or¢ > 0, o is of the form
o (u,v), andvis covered in round.

Lemma4.1. For any nonnegative integet there are at mostméutAfn‘l linked ¢-sequences of edges.

Proof. We proceed by induction of) treatingl = 0 and¢ = 1 as base cases. Rbe 0, the empty sequence
is the only linked 0-sequence, and the claim holds simdg, > 1. (Note thatA;, is at mosin since we do
not allow parallel edges.) Fér= 1, the number of linked 1-sequences is at nilesk NAgt.

Now let¢ be greater than 1 and inductively assume that the numbenrlafdi¢ — 1)-sequences of edges
is at mostnASFA-2. Recall that any linked-sequence of edges is of the form: (u,v) : (U, V') where
the ¢ — 1)-sequence of edges : (u,V) is linked and (, V') belongs toE. Observe that for any linked
(¢ — 1)-sequence of edges : (u,Vv), there are at most, nodesv’ such that ¢, v') belongs toE, and for
each such choice of, there are at mostj, nodesu’ such that (’, v') belongs toE. Thus the number of
linked ¢-sequences is at moAt:Ain times the number of linked! (- 1)-sequences, and the desired bound

follows from the induction hypothesis. m]

Lemma 4.2. Suppose we run two instances of process R-RANK in paraliej tise same random ranks

and the same sequence of random selections, but in the sewiadce, we allow an arbitrary subset of
the covered nodes to be uncovered after each round. Thermtee tme of the first instance is at most the
cover time of the second instance.

Proof. By a straightforward induction on the number of rounds, Hirakes, the set of covered nodes in the
first instance contains the set of covered nodes in the sdnstahce. The claim of the lemma followso

Lemma 4.3. For any rank assignment, the expected cover time of procd38MK is Gin?).

Proof. It follows from Lemma 2.5 that cover time i8(n?) with high probability since in that time each
vertex would have been selected at leasines implying that all its neighbors are covered.

We can then consider a modified version of process R-RANK irthvthe infinite sequence of rounds
is partitioned into epochs dd(n?) rounds, and where at the end of each epoch, if the nodes &ualno
covered, all nodes are uncovered before proceeding to #t@pech. Since each epoch covers all the nodes
with high probability, the expected cover time of this maetifiversion of process R-RANK i8(n?). By
Lemma 4.2, for any rank assignment, the expected cover tipmoess R-RANK iO(n?). m]
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Lemma4.4. Assume that node v is covered in round i and let u be the nodetedlin round i. Then there
is an i-active edge sequengeterminating in edg€u, v) and such that duratiofast(c)) = i.

Proof. Observe thau belongs tol'jn(v). Also observe that ipparen{v) = nil, the singleton node se-
guencev is active withduration(v) = i, and hence the singleton edge sequeance (u, V) is i-active with
duration(dst(o)) = i.

We prove the claim by induction anFori = 1, it must be true thgtareniv) = nil and the observations
of the previous paragraph prove the claim.

Fori > 1, if paren{v) = nil, the observations once again prove the claim. Othenpagniv) = Vv
whereVv’ is some node covered in round< i. Call the node selected in rourjdu’. Sincej < i, we can
inductively assume that there igactive edge sequence, calrjtterminating in edgeu(, v') and such that
duration(dst(r)) = j. Sincer is active, the node sequendsi(r) is active andselec{dst(r)) = src(r). Let
o =1:(u,v). Thussrd(o) = srd(r) : uanddsi{o) = dsi(r) : v. Sincepareniv) = V' andds{(r) is an active
node sequence terminating in nodedst(o) is active. Sincaluration(dst(r)) = j, selec{dst(r)) = src(7),

u was selected in round andi is the least integer greater thasuch that the node selected in round
belongs taolj(v), we haveduration(dst(c)) = i andselec{dst(c)) = sr(o). Sincedst(o) is active and
selec{dst(c)) = src(o), o is active. Sincer is active and nodg is covered in round, o is i-active. Thus
the edge sequencesatisfies all of the requirements of the lemma. m]

Lemma4.5. Any active node sequence is rank-sorted, chronological,camsists of distinct nodes.

Proof. Note that any chronological node sequence consists ohdistiodes. Thus, in what follows, it is
sufficient to prove that any active node sequence is rarteé@nd chronological.

We proceed by induction on the length of the sequence. Fdrake case, note that any node sequence
of length 0 or 1 is rank-sorted and chronological. For theigtihn step, consider an active node sequence
of the formt : v: V. Sinceo is active,r : v is active ancpbaren{Vv’) = v. Sincer : v is active, the induction
hypothesis implies that it is also rank-sorted and chragiold. Sinceparen(V’) = v, rank(v) < rank(V’)
andyv is covered before’. Henceo is rank-sorted and chronological. m]

Lemma4.6. For any nonempty active edge sequeocd the last edge i is (u, v), then node v is covered
in round duratior{dst(c)) and node u is selected in the same round.

Proof. We prove the claim by induction on the length of the activeeesigquence-.

If o~ consists of a single edga, {), then by the definition of an active edge sequence, theetmghode
sequencealsi(o) is active andselec{dst(c)) = src(o). Sincedst(o) is active,pareniv) = nil, that is, node
v is covered in the first round in which a nodelig(v) is selected, which is rounduration(dst(c)). Since
selec{dst(c)) = src(o7), nodeu is selected in the same round.

Now assume that is an active edge sequence of the farm(u, v), wherer is of the form7’ : (U, V).
Sinceo is active, the node sequendst(o) is active andselec{dst(c)) = sr¢(o). It follows thatdst(r) is
active andselec{dst(r)) = src(r), that is, is also active. Since is active and shorter tham, we can
inductively assume that is covered in roundluration(dst(r)) and nodeu’ is selected in the same round.
Sincedst(o) is active,pareni{v) = v/, that is, noder is covered in the first round after rouddration(dst(r))
in which a node i, (v) is selected. Applying the definition afuration(dst(c-)), we conclude thav is
covered in roundiuration(dst(c)). Sinceselecfdst(o’)) = src(o-), nodeu is selected in the same round o

Lemma4.7. If o is an active sequence of edges, theis linked.



Proof. We proceed by induction on the lengthaafIf the length ofo-is 0 or 1, therv-is linked by definition.
Now assume that is an edge sequence of the form (u, v), wherer is of the form’ : (U, V') ando is
active. Sincer is active,dst(o) is active. Sincalst(o) is active,dst(r) is also active. Sincdsi(r) is active
andr is shorter tharmr, we can inductively assume thats linked. Therefore, in order to establish tlais
linked, it is sufficient to prove thau(, v) is an edge. Sincds{(c) is active,paren{v) = v'. Hence, letting
denote the round in which nodds covered, we find that nodé is covered in the first round prior to round
i in which the selected node belongsltq(v). By Lemma 4.6y is covered in a round in which nodg is
selected. Thug’ belongs td'i,(v), that is, (/, V) is an edge, as required. m|

Lemma 4.8. If an edge sequenceis i-active then duratiofdst(c)) = .

Proof. If o is empty, then the claim holds since 0 andduration(dst(c’)) = 0. Otherwise¢ is of the form
7 : (u,v), and by the definition of airactive edge sequencejs covered in round. By Lemma 4.6y is
covered in roundluration(dst(c’)), soduration(dst(c’)) = i. ]

Lemma4.9. For any¢-sequence of edges and any nonnegative integer i, the probability thais i-active
is at mos{“*} ") Pr(X > i)(roin) ¢, where X~ NegBin(¢, ).

Proof. If the nodes indst(c") are not all distinct, then R(is i-active)= 0 by Lemma 4.5 and the claimed
inequality holds since the right-hand side is honnegative.

Now assume thatis{o-) consists of distinct nodes, and let eveAtsB, andC be as defined in the
statement of Lemma 3.4. Below we prove thatrifis i-active, then eventd, B, andC all occur. The
claimed inequality then follows by Lemma 3.5.

Assume thatr is i-active. Thus evenB occurs by Lemma 4.8. Furthermoke,is active, sadst(o) is
active and event occurs by the definition of active edge sequence. Silstier) is active, eveniA occurs
by Lemma 4.5. m]

Lemma4.10. For any nonnegative integers i addthe probability that somé-sequence of edges is i-active

is at most 1PrX > )
£+r— rX >1
nA¢ AL =7

out=in ( l ) (r()-in)[

where X~ NegBin(& %)

Proof. By Lemma 4.7, if an edge sequeneeis not linked, then Ptf isi-active) = 0. The union bound
then implies that the probability sorfesequence of edges isactive is at most the number of linkefd
sequences of edges multiplied by the maximum probabiligg #imy particular-sequence is-active. The
lemma follows by Lemmas 4.1 and 4.9. m|

Lemma 4.11. For nonnegative integers £, and r such that i> 64n max@outAm/(Sﬁ], (Inn)/éin) and r >
mMin([26?AoutAin/in1, €), We have

f€+T =1\Pr(X > i)
i)

N < exp(-idin/(32n))

where X~ NegBin(ﬁ, %).

n

Proof. See Appendix C. m]



Lemmad4.12. Forr = min([26?AoutAin /Sin 1, N), €Very active edge sequence @axAoutAin /5%, (logn)/éin))-
active with high probability.

Proof. Let c denote an arbitrary positive real greater than or equal &md |eti denote the positive integer
[64cn maX(AoutAin/dﬁp (In n)/din))]-

For any nonnegative integgrlet p; denotes the probability that there ig-active edge sequence. Ay
active edge sequenosis active, so the associated node sequelsie’) is active. It follows from Lemma 4.5
that anyj-active sequence has length at masikn other words¢ < n for any j-activef-sequence of edges.
Furthermore, ifj > 0 then the length of g-active sequence is nonzero. Since gsactive -sequence of
edges must havé < n, the conditionr = min([2e?AoutAin/din1, N) is enough for us to apply Lemmas 4.10
and 4.11. Thus, the union bound and Lemmas 4.10 and 4.11 immwz expjoin/(64n)) for j > i.

Let p denote the probability that there isjactive edge sequence for some i. By the union bound,
p < Xjsi Pj. Using the upper bound op; derived in the preceding paragraph, we find thas upper
bounded by an infinite geometric sum with initial tenfexp(-idin/(64n)) and ratio exptdin/(64n)). Thus

p O((N*/6in) eXPEidin/ (64n)))
O(n® exp(-c maxAoutAin /din, 10g 1))
= omn*o).

By settingc to a sufficiently large positive constant, we can dipeelow any desired inverse polynomial
threshold. The claim of the lemma follows. m]

Lemma4.13. Forr = min([26?AouiAin/din1, ), the cover time of process R-RANK ié@nax(AouiAin/52,, (109 n) /Sin))
with high probability, and the same asymptotic bound hoddgte expected cover time.

Proof. The high probability claim is immediate from Lemmas 4.4 arttP4

Thus, forc > 3 with probability at least + 1/n° the cover time i©(n max(AoutAin/éﬁl, (logn)/éin)) and
with probability at most In® we enter a bad case where we cannot apply our bound. In theadsad we
will use theO(n?) expected cover time bound provided by Lemma 4.3. Sirioé -10(n?) = O(1), we have
shown the desired result. m]

Theorem 1. If both Aj, and Ay are Q(6in), there is an r= O(6jn) such that the cover time of process
R-RANK is @nmax(3, (logn)/éin)) with high probability, and the same asymptotic bound hotstlie
expected cover time.

Proof. Immediate from Lemma 4.13. O

The result of Theorem 1 matches the lower bound proved by Adoprocess MIN and is thus opti-
mal [2].

Note that ag tends to infinity, the behavior of process R-RANK convergethat of process P-RANK.
Thus, the bounds of Theorem 1 also hold for process P-RANK.

5 Lower Bounds

While the full proofs of the two theorems stated in this amjerare rather lengthy, the main ideas are
straightforward. We summarize these main ideas in the twoffsketches that follow. The main technical
tools employed in the full proofs are Chernoff bounds andrais inequality (see, e.g., [6, 3]). Note that
our lower bounds hold even if we restrict attention to thecggdeclass of directed graphs where edggey]

is present if and only if edger(u) is present; below we refer to such graphs as undirected.
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Theorem 2. For all n, there is an n-node undirected graph G in which eadda has degre®(logn),
and an assignment of rankisthrough n to the nodes of G, such that process A-RANK has c¢iaer

Q(n+/(logn)/ loglogn) = w(n).

Proof sketch: Fix nand construcG as follows. First, partition the nodes intof levels numbered from
0 to¢ - 1, so that the following conditions hold: level O contai®én) nodes; the ratio of the number of
nodes at level — 1 to the number of nodes at leviek approximately = /(Ign)/Iglgn, 1 <i < ¢; level

¢ — 1 is the only level with fewer than/n nodes. Thug = ®((logn)/log logn). Assign ranks 1 through
to the nodes in such a way that nodes on lower-numbered leseéslower ranks. For each nodat level

i, select Igh nodes at random from each of levelsndi — 1 (with replacement), and add an edge froiio
each selected node. (If nodes at level 0, then select 2 lgnodes from level 0.)

We call a levelcrowdedif more than half of the nodes on that level are covered. Intidibbws, leti
be an arbitrary level, but for the sake of simplifying the esition, assume that@i < £ - 1. In any round
in which a node in level is covered, the selected node belongs to Ievell, i, ori + 1. If the selected
node belongs to leval- 1 (resp.,i, i + 1) we refer to such a node covering ascending(resp.,lateral,
descending The main observation underlying our proof is that untrelle — 1 is crowded, only a negligible
fraction of the node coverings at leviedre ascending or lateral. (This is because a node seleckeekhit
ori — 1is likely to have an uncovered neighbor at a level less thdfurthermore, a trivial upper bound on
the number of descending node coverings at leiebiven by the number of node selections at lavell,
and we can upper bound the latter quantity using a standaechGti bound argument.

Using the preceding ideas, we obtain an upper bound the fatserage of nodes at levelintil level
i — 1 is crowded. Once level— 1 is crowded, we upper bound the rate of node coverings ak idwe
pessimistically assuming that every selection in lévell, i, ori + 1 results in a node covering at level
i. By applying these upper bounds on the rate of node covereg@re able to prove by induction on
that, with high probability, level is not crowded before roung + 2—5‘. The theorem follows by setting
i =¢—1=0((logn)/loglogn). m|

Theorem 3. For all n, there is an n-node undirected graph G in which eaciden has degre®(logn),
and an assignment of rankisthrough n to the nodes of G, such that process A-RANi§ cover time
Q(nloglogn) = w(n).

Proof sketch: The proof of this theorem is similar to that of Theorem 2. Trep@G is defined in the same
way except that the ratié of the number of nodes between successive levels is takem apfroximately
(Ign)Y/4, and we restrict the number of levelso ®((log n)®8 log logn).

For rounds in which a node is covered that is different from ¢klected node, we refer to the node
covering as ascending, lateral, or descending as in thd pfatheorem 2. If the covered node is equal to
the selected node, we refer to the node covering as stagionar

We now call a level crowded if more than a-%lg n)~/8 fraction of the nodes on that level are covered.
The motivation for this change is that stationary node dagsrquickly cover a significant fraction of the
nodes in each level.

The proof now proceeds in much the same manner as the prodfeafrém 2, with the following two
major differences. First, for any given leviglwe now need to upper bound the number of stationary node
coverings observed at levielvithin a given number of rounds. Such an upper bound is giyethé number
of distinct nodes selected at levielwhich is not difficult to characterize. Second, the thréghan the
number of rounds after which we claim that, with high prolighilevel i is not crowded, reduces to

n,__nmo_
4 4g(lgn)t/e’
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0 <i < ¢. The theorem follows by settinig= £ — 1 = @((logn)*8log logn). O

6 Concluding Remarks

As indicated in the introduction, we conjecture that them@ positive constartsuch that for any logarithmic-
degree graph, each of the fitgh] rounds of process R-RANK covers a node with high probabiftyroof

of this conjecture would provide load balance guaranteea f@ide class of DHTs. It would also be inter-
esting to see if the proof ideas used in this paper can be aggdvide similarly optimal bounds for process
UNI.
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A Proofsof Basic Probabilistic Lemmas

Proof of Lemma 2.1Note that ifp; = p for all j, then the random variablesandY have the same distri-
bution. Furthermore, increasing any of thgs can only decreas¥. m]

Proof of Lemma 2.2The random variableX andY can be seen as different views of the same experiment
where we successively flip coins with probability of succgsgvith Y, we ask “How many flips are required
for r successes?” WitK, we ask “How many successes are in the filipps?” In this experiment, the event

of seeing less thansuccesses in the firstflips (X < r) corresponds to the event that we have to wait more
thann flips for the firstr successesy(> n). This gives the result. |

Proof of Lemma 2.3Let j = |2 | - 1 and letY ~ Bin(j, p). By Lemma 2.2, we know that PX(> Z) <
PrX > |2 ) =Pr(X > [ Z] - 1) =Pr(Y <r) =Pr(Y <r - 1).
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Pr(Y < %) - Pr(Y <r-(+ 1)‘—2))
- Pr(Y<r-1)
whereZ =|Z |+ and the last equality holds because @7 + 1)5 < 1.

Recall the Chernoff bounds in the form

PriY < (1-2)jp) < exp(_/l;jp)

for0< 1 < 1 (see [4, 3)).
We apply this bound with = 1 to get

Priy<r-1) = Pr(Y < %)
< exp( 8
_ eXp(—Zr +(n+ 1)p)
8

< eof7)

< p A
wheren, is as previously defined and the last inequality holds bexans?2. O
Proof of Lemma 2.4The result follows from Chernoff bounds (see, e.g., [4, 3]). m|
Proof of Lemma 2.5The result follows from Lemma 2.4. O

Proof of Lemma 2.6Let [n] = {1,2,...,n}. Suppose mi(l%, }1) = k. LetS C [n] be a particular subset of
sizek. Then,

i
Pr(all balls land irS) < (E)

Thus,

Pr(X <Kk)

pr[ U aIIbaIIsIandinS]
S S.t.IS=k

()
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Now, since2 > 2k and sincek > 2 |mpI|es <z |mpIy|ng
<y
Prix <k < (% (k)
n/\n
ek\ (1 :
(%) 3
exp(_i)
2

IA

B ProofsReated to ProcessSELECT

Proof of Lemma 3.1There are(“r 1) ways that ranks can be assigned to ftdistinct nodes so that the

resultingf-sequence is rank-sorted. The result follows since eadh assignment occurs with probability
-t
r=t. i

Proof of Lemma 3.2We proceed by proving that
Pr(duration(c) =i) = Pr(Z Yi = i)

whereYy ~ Geo( ) anddy denotes the in-degree @f. The desired bound then follows by Lemma 2.1.
We prove the foregoing claim by induction énlf £ = 0, the claim holds sincguration(o’) = Zk:l Yk =

0.
For¢ > 0, we letr denote the node sequengg. . ., V,_1 and assume inductively that
(-1
Pr(duration(r) =i) = Pr(} Yi=i)
k=1
Thus,
i-1
Pr{uration(o) =i) = Pr(duration(t) = j) - Pr(duration(o") — duration(r) = i — j | duration(r) = |)

T
)

= Pr(duratlon(r)— j) - Pr(duration(c-) — duration(r) =i — j)

T
= o

= Pr(duratlor‘(r) =j)-PriY,=i-1])

N
P o

-1

= Pr(ZYk= j)-PrYe=i-j)

j= k=1

= Pr(2 Y = ).
k=1

O
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The second equality comes from the fact that future selest@we independent of past selections. The third
equality comes from the fact that the number of rounds ethfreen any given time to the next selection in
[in(ve) is distributed a¥,. O

Proof of Lemma 3.3We proceed by induction ofi For¢ = 0, Prelectdst(c)) = src(o)) = 1 = 6% since
we have assumed th&f, > 0.

For¢ > 0, o can be written in the formr : (u, V), where we inductively assume that the claim of the
lemma holds forr. Let A denote the event that the first node selecteldj(v) after roundduration(dst(r))
is u. We have

Pr(selectdst(o)) = srd(o)) Pr(selec{dsi(t)) = src(t)) - Pr(A | selectdst(t)) = src(r))
Pr(selectdst(t)) = src(t)) - Pr(A)

< &t

The second step follows from the independence of the everisd selec{dst(c’)) = srd(o”’) (They are
independent since future selections are independent ofspéections). The third step follows from the
induction hypothesis and the observation thatPi§ equal 1I'i,(v), which is at most 15;,. m|

Proof of Lemma 3.4Note that evenf depends only on the rank assignments, while evBrisdC depend
only on the selections. Thusis independent of even® andC. Below we argue that evenBandC are
independent.

Leto = (U, v1),..., (U, ve) and letoj denote the length-prefix of o, 0 < j < ¢. Define a selection to
be j-special 1 < j < ¢, if itis the first selection after rounduration(c-j_1) in T'in(v;). A selection isspecial
ifitis j-special for somg. Note that evenB depends only on the timing of the special events; in padigul
B occurs if and only if thef-special selection occurs in round Suppose we run process SELECT, but
at each step, instead of revealing the selected node, wal renty whether the selection is special. This
information is sufficient to determine the uniguir which B occurs, but does not bias the distribution of
selec{dst(c)). Since even€ only depends oselectdst(c)), it is independent oB. O

Proof of Lemma 3.5By Lemma 3.1, Pw) < (“*7)r‘. By Lemma 3.2, Pi) < Pr(X > i). By Lemma3.3,
PrC) < 6;]"’. The claim then follows by Lemma 3.4. m]

C Proof of Lemma4.11

First, we show that the LHS of the claimed inequality is a noreasing function of.
It is sufficient to prove that the expressiéﬁ’i;‘l)r“ is a nonincreasing function of Fix £ and letf(r)
denote the preceding expression. Note that

fr+1)  r+f( r ¢
fry — r (r+l)

g

< 1

where the last inequality holds since the binomial theomeplies (1+ £)° > 1+ £.
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Since we have established that the LHS of the claimed inggusla nonincreasing function af we
can assume in what follows that min([2e?AgutAin/in1, £).
Let us rewrite the LHS of the claimed inequality &asPr(X > i), where

A

 Al-1
AOutAin

(€+r—l

\ oo

IN
B
~

in

(erutAin (5 + I’) )f

€1 oin (1)

We begin by establishing two useful upper boundstpmamely, Equations (2) and (4) below.
If r = [26?AoutAin/din], then since since = Min([26?AoutAin/din1, €), we haver < ¢. Substituting the
value ofr in Equation (1), we find that

et +1)\
( 2e2¢ )

o (2
- \2e%

e’. (2)

IA

If r = ¢, then Equation (1) implies

(3)

1 < 2erutAin ‘
< —&Sin .

Let h(¢) denote the natural logarithm of the RHS of Equation (3)t thah(¢) = £In(2eAqutAin/(£6in))-
Using elementary calculus, it is straightforward to prokattthe derivative oh(¢) with respect tof is
positive forf < 2AquiAin/din, Is 0 whent = 2AquiAin/din, and is negative fof > 2AquiAin/din. It follows that
h(€) < h(2AoutAin/Sin) = 2A0utAin/Sin. Since In is monotonic, the RHS of Equation (3) is also mazédi
when¢ = 2AquiAin/din. Combining this result with Equation (2), we have that reggss of the value af

A < exp(QoutAin/din). (4)

(Note that exp(RoutAin/din) > 1 and Equation (2) implies < 1 whenr = [26?AoutAin/in].)

We are now ready to proceed with the proof of the lemma. Weidenshe two case$ > [idi,/(2n)]
and¢ < [idin/(2n)] separately.

If £ > Tidin/(2n)], then¢ > 2ecmax@outAin/din, INN) wherec = 16/e > e. In specific, we have
¢ > [2€2AoutAin/din], and thusr = [262AguiAin/din]. It follows from Equation (2) thatl < e <
exp(-idin/(2n)) < exp(-idin/(64n)), and hence the claim holds since®f i) <1.

Now assume that < [idin/(2n)]. LetY ~ NegBin(| 52|, %) andZ ~ NegBin(|'52 | - ¢, %2). By the
definition of the negative binomial distribution, Pr& 1) = Pr(X + Z > i). And, sinceZ is nonnegative,

PrX+Z >i) = Pr(X = i). Thus

PrX = i) < Pr(Y > i). (5)
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SinceE[Y] < | andLid,n/(Zn)J > |32 maxQoutAin/oin, INN)] > 2, Lemma 2.3 implies PY( > i) < Pr(Y >
2E[Y]) < exp( S + 3). The claim follows since

A-PrX>i) < (ZA(;“tA'n) Pr(Y > i)
in
< exp |5|n 1 ZAoutAm
- 5in
< exp( I(s'” —)
¢ onf)

(The first step follows from Equations (4) and (5). For thedhsétep and fourth steps, note that the as-
sumptioni > 64nmaxAoutAin/62,, (Iogn)/sin) implies iin/(32n) > 2AoutAin/din andisin/(64n) > 1/8,
respectively.)

n’

D Process R-RANK’

In this section we analyze a biased version of process R-RAN#ch we call process R-RANK Process
R-RANK’ is the same as process R-RANK, but now, immediately aftetextsen, if the selected node is
uncovered we cover it and move to the next selection. Otiserwve proceed as in process R-RANK.

In our analysis, we find it helpful to consider another praceghich we call process H. Process H
runs in two phases. For the first phase, consisting of thectinstax(J, (logn)/éin) rounds, we run process
SELECT. At the end of phase 1, we remove from the underlyiagplyiall edges which did not have at least
one end-point selected during phase 1. After the edge rdmeegproceed to phase 2 where we begin to
cover vertices as in process R-RANK.

Lemma D.1. If process H and process R-RANKse the same node numbering, random rank assignment,
and infinite series of selections, the cover time of proceBARK is at most the cover time of process H.

Proof. We prove the stronger claim that if process H and process RiRAIse the same node numbering,
random rank assignment, and infinite series of selectionsundi, every node covered in process H is also
covered in process R-RANK

Call a roundi low if i < cnmax(1, (logn)/din), and high otherwise. We call a node marked if it was
selected in some low round.

We proceed by induction an For the base case, we consider any low round these rounds, process
H covers no nodes, so there is nothing to prove.

Now, assume is high. Letu be the node selected in roundin both process R-RANKand process
H). If no node is covered in process H, claim follows from thduction hypothesis. Now assume node
covered in process H in roundand assume thatis not covered in process R-RANIrior to roundi. (If v
is covered in process R-RANKorior to roundi, there is nothing to prove.) We now complete the induction
step by arguing thatis also covered in rounidin process R-RANK

If vis marked, thew is already covered in process R-RAN$ince it was selected in a low round. So we
can assume thatis unmarked. Since H seleaisand covers in roundi, (u, v) must not have been removed
by process H at the end of phase 1. Thuandv cannot both be unmarked, adgs marked.
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It follows thatu is not equal tor andu is already covered in process R-RANHSs it was selected in
a low round. Sinceas is marked, it has the same set of outgoing neighbors in batbegses, i.e., no edge
(u, w) was thrown away in process H at the end of the first phase.

LetS (resp.,T) be the uncovered outgoing neighboraudh process R-RANK(resp., process H) at the
beginning of round. By the induction hypothesis§ is contained inT. Since both processes use the same
node numbering and random ranks, the neighbor selectiareguoe gives well defined order of the nodes.
SinceS C T andv is the minimum order node il and belongs t&, v is the minimum order node i8.
Thusv also is covered in roundin process R-RANK m|

LemmaD.2. The cover time of process R-RANKO(n maxAouiAin /5%, (log n)/éin)) with high probability.
The expected cover time has the same bound.

Proof. We run a copy of process R-RANKn parallel with a copy of process H, using the same node
numbering, random ranks, and selections.

We call phase 1 of process H successful if at |&gstd of every node’s in-neighbors are selected. If
phase 1 is unsuccessful, we over estimate the cover timeoégs R-RANKby theO(nlogn) cover time
of coupon collector. If phase 1 is successful, by Lemma D.Inag overestimate the cover time of process
R-RANK” with the cover time bound of process H. To find the cover timenabof process H, we add the
number of rounds during phase 1, to the cover time bound agsR-RANK during phase 2. We apply
Lemma 4.13 to phase 2 of process H where the graph has inedatleasbi, /4, to get a cover time bound
of O(max@outAm/(Sﬁ], (logn)/éin)) for process H. Since the bound on the cover time of processldth
with high probability and in expectation, if phase 1 is sussfel with high probability, the same bound holds
for process R-RANK

All that remains to be shown to prove the required resultas fihase 1 is successful with high proba-
bility.

Consider a specific node. The probability of selecting a node Iy, (w) on any selection is a Bernoulli
random variable with success probability at leastn. The number of selections in,(w) during phase 1
is the sum ofcnmax(3, (logn)éin) such independent Bernoulli random variables. Thus, byran2.4,
the probability of getting less thart/Q) max@in,logn) selections inljn(w) during phase 1 is at most
exp(c/12) max@in, logn)), which is an arbitrary inverse polynomial by choosing@géeenough constait

Given that ¢/2) maxgin, (log n)) selections during phase 1 select a vertaXifw), we apply Lemma 2.6.
To do so, let the variables in the lemmarbe [, (W)| > 8in, andj = (c/2) maxin, (logn)) which is also at
leastdsi, if we setc > 2. Thus, Lemma 2.6 tell us that the probability less tléj{anlistinct nodes of’j,(w) are
selected during phase 1 of process H is at mostEx@Xx(in, log n)), which is an arbitrary inverse polyno-
mial by selecting a large enough constantaking the union bound over all nodes in the graph shows that
phase 1 is successful with high probability. m]
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